

www.paces-project.eu

Scenario Workshop, 19 April 2016, FORTH, Heraklion, Crete, Greece

Seismic Risk Assessment of Heraklion city & Relevant Seismic Scenarios

<u>C. Gountromichou</u>, Geologist MSc, PM

Head of Emergency Planning – Prevention Dept.,

D. Kazantzidou-Firtinidou, Earthquake Engineer MSc

J. Delakouridis, Geologist, MSc in Natural Disasters

EARTHQUAKE PLANNING AND PROTECTION ORGANIZATION (E.P.P.O.)

HELLENIC MINISTRY OF INFRASTRUCTURE, TRANSPORT AND NETWORKS

Geodynamic Setting of Greece -Subduction

Seismicity of Southern-Eastern Part of

Seismic activity of the European-Mediterranean region in the 1973-2002 period with magnitude m_b > 3.0, from the USGS/NEIC PDE Catalogue.

Earthquake Planning and Protection Organization (E.P.P.O.)

- Is a Legal Entity of Public Law and operates under the supervision of the <u>Hellenic</u> <u>Ministry of Infrastructure,</u> <u>Transport and Networks</u>
- Was founded in <u>1983</u>, as the responsible authority for planning and processing the earthquake policy in Greece
 as well as to coordinate the public and private resources for the implementation of this policy

Seismicity of Greece (1900-2007)

Seismic Risk Assessment in Heraklion city

<u>E.P.P.O.</u>

Seismicity in Heraklion city

Data used for this study

- Geographic Military Service
 - Topographic map 1:50.000, DEM - Slope map, Hill shade
- Herakleio municipality
 - Microzonation study (1998) - scale 1:10000
 - Geological map of Herakleio city
 - Neotectonic map
- Hellenic Centre for Marine Research (HCMR)
 - Submarine fault map

- Hellenic Statistic al Authority (EL.STAT.)
 - Population data (Census 2011)
- EPANTYK 2009, Census 2001
 - Building stock data
 - **Digital maps**
- "ASPIDA PROJECT"
 - Fault map

Seismic Risk Assessment in Heraklion city

Seismic Disaster Risk Assessment

Deterministic seismic hazard assessment

Stages followed:

1. Identification of the nearest active faults (Microzonation study)

2. Calculation of the largest earthquake that could happen on this fault and the expected intensity (Wells, D. L. and K. J. Coppersmith, 1994)

3. Estimation of the distance of attenuation of the strong ground motion **(Theodoulidis, N.P., 1991)**

4. Calculation of increase or decrease of the expected seismic intensity among different rock categories (Degg, M.R., 1992)

Active Faults in the broader area of Heraklion city

Geological & active fault map of the Study area

E.P.P.O.

European Commission

1 E.P. P.O.

European Commission

Seismic Disaster Risk Assessment

Exposure Model of Heraklion city

- Capital city of Crete, biggest port and administrative center of the island
- Surface: 120km² (after "Kallikratis" aggregation policy)
- Municipality population: 174'000
- No buildings: 34'860 (Census 2001)

Exposure Model – City of Heraklion

Eikovec and ©2016 , CNES / Astrium, Cnes/Spot Image, DigitalGlobe, European Space Imaging, Landsat Opor Xphonc Avagopo ago/uaroc xobr

Exposure Model – City of Heraklion

Selected study area after communication with Civil Protection Department

Exposure database – Material Distribution

Exposure database– Construction time period

Earthquake Resistant Design (ERD) Codes evolution

- Prior to 1959: No ERD, low quality material, shallow ⁷⁰⁰⁰ foundations ⁶⁰⁰⁰
- 1959-1984: first ERD, static⁵⁰⁰⁰ lateral loading with seismic⁴⁰⁰⁰ coefficient (ε) & weight, use³⁰⁰⁰ of rod steel long.
 Reinforcement
- 1984-1994: Some modifications, triangular loading, spatial model

1995, 2000: New ERD,

Lecapacity design, ductility

dynamic methods, spectr

City of Herakleion – Construction time period

RC frame buildings

RC frame buildings

- Masonry buildings
 - Stone masonry
 - Brick masonry

Timber buildings

modation in Emergency Shelters

Elements for vulnerability analysis

EPANTYK, 2009; Census 2001

- **1.** Time construction period
- 2. Construction material
- 3. Structural bearing system
- 4. Number of storeys
- 5. Irregularity: "Soft storey" (pilotis, glass panels)
- 6. Use
- 7. Adjacent buildings for pounding risk

Seismic Disaster Risk Assessment

Vulnerability model

Vulnerability summarizes the characteristics of exposed people or physical assets that make them more or less likely to be affected by a hazard event.

Macroseismic Method (LM1-RiskUE) (Giovinazzi & Lagomarsino, 2004)

 $V_I = V_I^* + \Delta V_m$

V_I^{*} : Typological vulnerability index within an uncertainty range (V_I^{min},V_I^{max})

 ΔV_m : Behavior Modified factor

s for Appropriate accommodation in Emergency Shelters

Vulnerability model

Risk Assessment – Damage estimation

Damage Risk = Building Stock * vulnerability * seismic hazard

 $\mu_{\rm D}$ =2.5(1+tanh((I+6.25V_{\rm I}-13.1)/2.3)

I: macroseismic intensity V₁: Vulnerability index

β-distribution of mean damage grade \rightarrow probability of occurrence ofeach damage grade μ_D for max prob.

<u>Classification of</u> Damage

Damage estimation – Scenario 1

Damage estimation – Scenario 1

Damage estimation classification

Damage estimation – Scenario 1

Zoom into the most affected area

Damage estimation – Scenario 1

Probability of occurrence of all damage states per block

As Results so far

- Heraklion city accommodates many active seismic sources. 4 are selected for the development of the seismic scenarios. Agnos Fault – 13 km in length – has been elaborated so far.
- Hazard analysis of Agnos Fault indicates an estimated intensity of IX almost in the entire city
- The northern part of Heraklion city assessed as the most structurally vulnerable area
- Damage estimation in strong correlation with vulnerability distribution for constant hazard intensities

Future steps

- Seismic scenarios will be implemented taking into account the other 3 active seismic structures.
- Direct economic losses and losses in terms of population (casualties, injuries) will be assessed for the selected seismic scenario applied for the evacuation exercise, according to available data
- Based on the final selected seismic scenario will take place the evaluation of
 - most affected districts for evacuation selection
 - less affected areas as appropriate for emergency sheltering
 - & operations center location

References (1/2)

- Milutinovic, Z., Trendafiloski, G., 2003. An advanced approach to earthquake risk scenarios with applications to different European towns. ReportWP4: vulnerability of current buildings, Risk-UE. European Commission, Brussels, DOI: 10.1007/978-1-4020-3608-8_23.
- Giovinazzi, S., Lagomarsino, S., 2004. A macroseismic method for the vulnerability assessment of buildings. Proc. of the 13th World Conference on Earthquake Engineering, Vancouver, 896.
- Grunthal, G., 1998. European Macroseismic Scale 1998. Cahier du Centre Européenne de Géodynamique et de Séismologie, Vol. 15, Luxembourg.
- EPANTYK, 2009. Development of GIS software for the Representation of the Structural wealth of the municipalities of the country and of its Structural Vulnerability in buildings block level, YP.ES.A & H.D., KEDKE &TEE 39 pp.
- ASPIDA, 2015. Infrastructure Upgrade for Seismic Protection of the Country and Strengthen Service Excellence through Action, project MIS-448326, implemented under the Action, Development Proposals for Research Bodies-ASPIS-KRIPIS

References (2/2)

- Wells, D. L. and K. J. Coppersmith, 1994, "Analysis of Empirical Relationships among Magnitude, Rupture Length, Rupture Area, and Surface Displacement," Bulletin of the Seismological Society of America, v. 84, p. 974-1002.
- Theodoulidis, N.P., 1991. Contribution to the study of strong motion in Greece.
 Ph.D. Thesis, University of Thessaloniki, 500pp.
- Degg,M.R., 1992. The ROA Earthquake Hazard Atlas project: recent work fromtheMiddle East. In: McCall, G.J.H., Laming, D.J.C., Scott, S.C. (Eds.), Geohazards: Natural and Manmade.Chapman and Hall, London, pp. 93–104.

Thank you very much!

Earthquake Planning & Protection Organization (E.P.P.O.) Team for PACES

Chrysa Gountromichou, cgountro@oasp.gr

Geologist MSc PM, Head of Emergency Planning – Prevention Depart.

Danai Kazantzidou-Firtinidou, danai.kazantzidou@gmail.com

Civil Engineer MSc, Scientific collaborator

Giannis Delakouridis, Geologist Msc, Scientific collaborator Gabriela Zagora Civil Engineer MSc, Evangelia Pelli Civil Engineer MSc, Maria Manousaki Geologist, Maria Podimata Civil Engineer MSc